

GHG EMISSION REDUCTIONS AND ASSOCIATED COST OF ELECTRIC HEAT PUMP CONVERSIONS VERSUS INCREASING BIOBLENDS

RICHARD SWEETSER

DR. THOMAS BUTCHER

NORA TECHNICAL RESEARCH

Range of Biofuels

	Petroleum No. 2 Fuel Oil	Biodiesel	Renewable Diesel (HVO)	EL ¹
C (w%)	86.8	75.8	85.0	58.3
H (w%)	13.2	12.6	15.0	8.3
O (w%)	0	11.6	0	33.3
HHV ² (Btu/gal)	138,300	125,300	132,800	95,508
Density (lb/gal)	7.09	7.34	6.51	8.47
Water Vapor Saturation ³ (F)	120	121	121	121

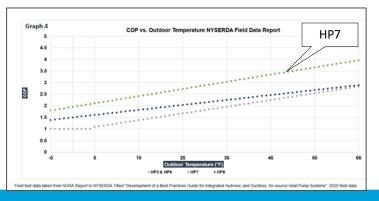
- 1. Ethyl Levulinate
- 2. Higher Heating Value
- 3. Saturation temperature of flue gas water vapor at 30% excess air

Research Study and Multi-Variant Calculator Development

This presentation presents results from a residential heating multivariant analysis tool converting oil heated homes through several carbon reduction pathways through 2050:

- Increasing biodiesel blends
- More efficient bioblend fueled boilers
- Bioblend fueled thermal heat pump
- Electrification with air-source electric heat pumps with electric backup heating

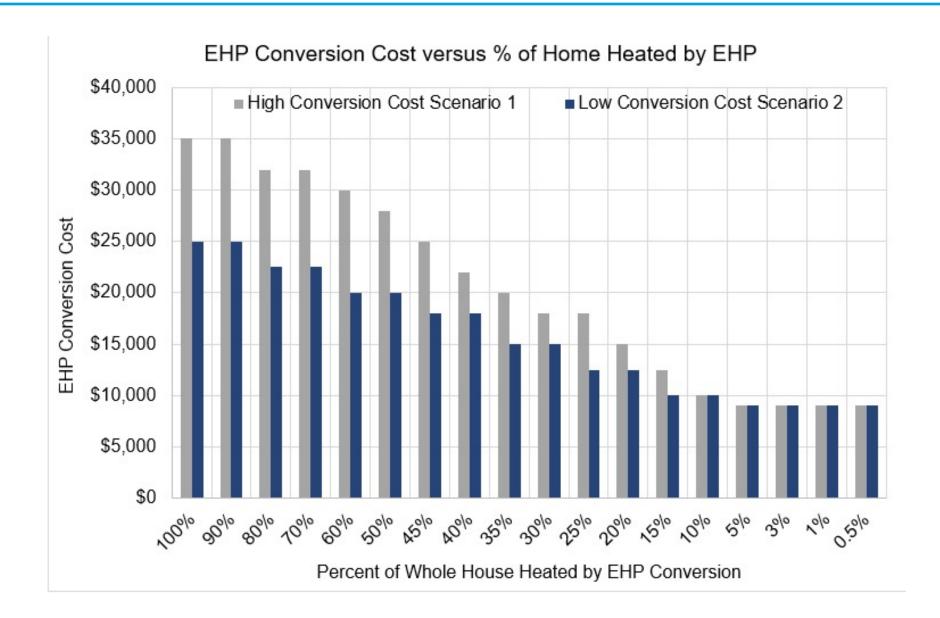
The Purpose of the model is to understand the cost and benefit of these pathways to the future.


Model Results Background

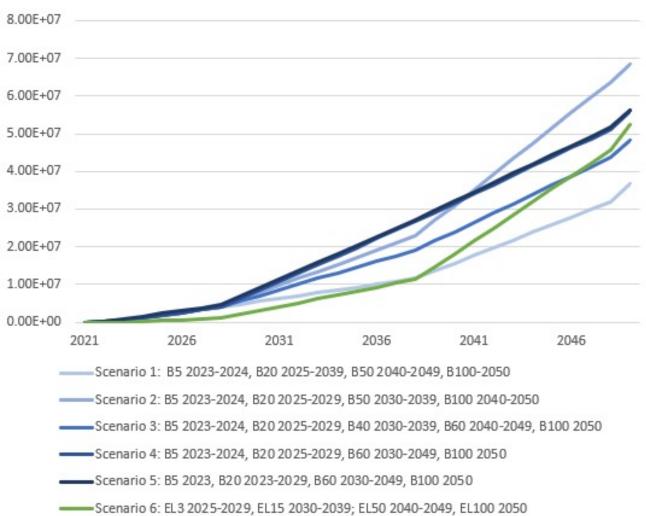
- Using Bangor, ME Weather Data
- Using current Maine oil heated homes as baseline (344,869 homes)
- All emissions data are from U.S. DOE Argon National Laboratory Argonne National Laboratory GREET Model Calculations, Using December 2020 Version
- All electric heat pump performance curves are from NYSERDA report titled "Development of a Best Practices Guide for Integrated Hydronic and Ductless, Air-source Heat Pump Systems" using 2020 field data.
- Electric heat pump conversion cost estimates are from current HVAC contractors consensus findings.
- This model does not include the impact of water heating

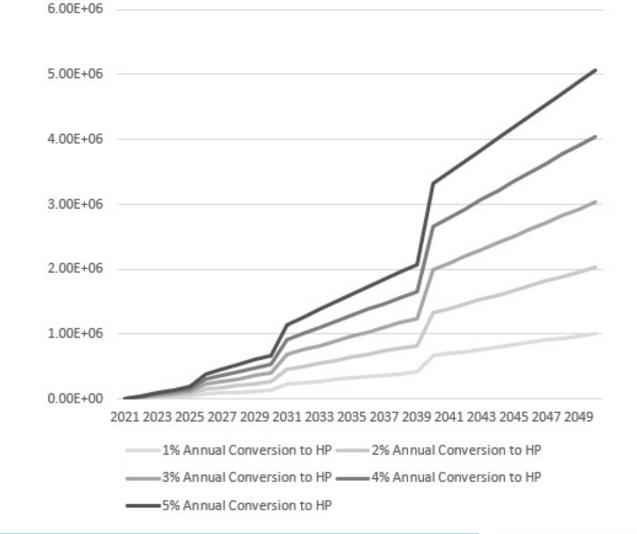
Main Variables

City:	Bangor, ME
Global Warming Atmospheric Lifetime:	20 Year Lifetime-AR5
Biodiesel Feedstock:	Average Bioblend of Feedstocks
Average Liquid Fueled Efficiency:	78%
Seasonal Liquid Fueled Non-Condensing Boiler Efficiency:	86%
Seasonal Liquid Fueled Condensing Boiler Efficiency:	95%
Liquid Fuel and Boiler Conversions Starting in 2023:	5%
Seasonal Liquid Fueled Thermal Heat Pump Efficiency:	125%
Liquid Fueled Thermal Heat Pump Conversions Starting in 2025:	5%
Electric Heat Pump (EHP) Performance Curve:	HP7
Annual Home Heating Load (MMBtu):	100
Total Number of Existing Oil Heated Homes to be Assessed:	344,869
Percentage of Existing Liquid Fueled Homes to be Converted Annually to Heat Pumps Starting in 2023:	5%
Annual Number of Annual Home Conversions to Electric Heat Pumps:	17,243

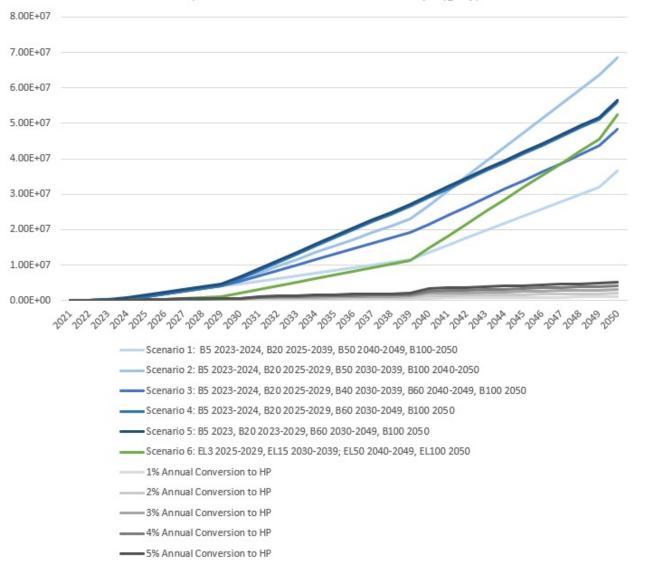


Assumed electricity decarbonization rate


15%@2025; 25% @ 2030; 50% @ 2040; 100% @ 2050.



Cumulative GHG Emissions reductions from bioblend changes only (tons)



Cumulative GHG Emissions reductions from Air Source Heat Pump Conversions only (tons)

Cumulative GHG Emissions Reductions from Biofuels (blue and green) in comparison with Air Source Heat Pumps (gray)

Capital Cost

Capital cost per ton of GHG reduction: Biofuels Air-Source Heat Pumps

Conclusions

- Electric heat pump conversions are costly for homeowners
- Electric heat pump conversions substantially have higher cost per ton of GHG (CO_{2e}) than current market prices (RGGI = March 3, 2021, resulted in a clearing price of \$7.60 per ton of CO₂ and on February 26, 2021 the Biden administration announced an initial estimate of \$51 per ton of carbon).
- Adopting biofuels can achieve greater GHG impact in the near term

Followup?

The model this work is based on is still in a draft form. If you would like to discuss or get a full copy for review contact:

Richard Sweetser Exergy Partners (703) 707-0293 ExergyPartners@outlook.com

